Welcome! Follow the steps below to verify and access your download. Click the button below to start verification.
Mars
Mars is the fourth planet from the Sun. The surface of Mars is orange-red because it is covered in iron(III) oxide dust, giving it the nickname "the Red Planet".[22][23] Mars is among the brightest objects in Earth's sky, and its high-contrast albedo features have made it a common subject for telescope viewing. It is classified as a terrestrial planet and is the second smallest of the Solar System's planets with a diameter of 6,779 km (4,212 mi). In terms of orbital motion, a Martian solar day (sol) is equal to 24.6 hours, and a Martian solar year is equal to 1.88 Earth years (687 Earth days). Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos. The relatively flat plains in northern parts of Mars strongly contrast with the cratered terrain in southern highlands – this terrain observation is known as the Martian dichotomy. Mars hosts many enormous extinct volcanoes (the tallest is Olympus Mons, 21.9 km or 13.6 mi tall) and one of the largest canyons in the Solar System (Valles Marineris, 4,000 km or 2,500 mi long). Geologically, the planet is fairly active with marsquakes trembling underneath the ground, dust devils sweeping across the landscape, and cirrus clouds. Carbon dioxide is substantially present in Mars's polar ice caps and thin atmosphere. During a year, there are large surface temperature swings on the surface between −78.5 °C (−109.3 °F) to 5.7 °C (42.3 °F)[c] similar to Earth's seasons, as both planets have significant axial tilt, Earth at 23.5 degrees and Mars at 25 degrees. Mars was formed approximately 4.5 billion years ago. During the Noachian period (4.5 to 3.5 billion years ago), Mars's surface was marked by meteor impacts, valley formation, erosion, and the possible presence of water oceans. The Hesperian period (3.5 to 3.3–2.9 billion years ago) was dominated by widespread volcanic activity and flooding that carved immense outflow channels. The Amazonian period, which continues to the present, has been marked by the wind as a dominant influence on geological processes. Due to Mars's geological history, the possibility of past or present life on Mars remains of great scientific interest. Since the late 20th century, Mars has been explored by uncrewed spacecraft and rovers, with the first flyby by the Mariner 4 probe in 1965, the first orbit by the Mars 2 probe in 1971, and the first landing by the Viking 1 probe in 1976. As of 2023, there are at least 11 active probes orbiting Mars or on the Martian surface. Mars is an attractive target for future human exploration missions, though in the 2020s no such mission is planned.Mars lost its magnetosphere 4 billion years ago,[112] possibly because of numerous asteroid strikes,[113] so the solar wind interacts directly with the Martian ionosphere, lowering the atmospheric density by stripping away atoms from the outer layer.[114] Both Mars Global Surveyor and Mars Express have detected ionized atmospheric particles trailing off into space behind Mars,[112][115] and this atmospheric loss is being studied by the MAVEN orbiter. Compared to Earth, the atmosphere of Mars is quite rarefied. Atmospheric pressure on the surface today ranges from a low of 30 Pa (0.0044 psi) on Olympus Mons to over 1,155 Pa (0.1675 psi) in Hellas Planitia, with a mean pressure at the surface level of 600 Pa (0.087 psi).[116] The highest atmospheric density on Mars is equal to that found 35 kilometres (22 mi)[117] above Earth's surface. The resulting mean surface pressure is only 0.6% of Earth's 101.3 kPa (14.69 psi). The scale height of the atmosphere is about 10.8 kilometres (6.7 mi),[118] which is higher than Earth's 6 kilometres (3.7 mi), because the surface gravity of Mars is only about 38% of Earth's.[119] The atmosphere of Mars consists of about 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water.[2][120][114] The atmosphere is quite dusty, containing particulates about 1.5 μm in diameter which give the Martian sky a tawny color when seen from the surface.[121] It may take on a pink hue due to iron oxide particles suspended in it.[22] The concentration of methane in the Martian atmosphere fluctuates from about 0.24 ppb during the northern winter to about 0.65 ppb during the summer.[122] Estimates of its lifetime range from 0.6 to 4 years,[123][124] so its presence indicates that an active source of the gas must be present. Methane could be produced by non-biological process such as serpentinization involving water, carbon dioxide, and the mineral olivine, which is known to be common on Mars,[125] or by Martian life.[126]
If Any Button Is Not Working Please Comment Down We Will Fix it As Soon As Possible Thankyou For Visting 🤝🫂